于海波
◆个人简介
于海波,男,2014年7月毕业于厦门大学基础数学专业,获博士学位,现为亚搏手机登录页面副教授。
◆教学情况(含本科教学、研究生教学):
《线性代数》,《概率论与数理统计》,《微分方程与动力系统》,《非线性泛函分析》,指导2015级硕士研究生1名。
◆主持科研项目:
a,2016.1-2016.12,国家自然科学基金(天元基金)
各向异性Navier-Stokes和MHD方程边值问题整体正则性(11526091),主持
b,2018.1-2020.12,国家自然科学基金(青年基金)
可压缩等温Navier-Stokes方程整体适定性问题研究(11701192),主持
◆研究领域及成果:
从事流体力学中偏微分方程的研究,相关成果发表在《JDE》、《Nonlinearity》、《JMP》等SCI杂志。具体如下:
[1] Liu S Q,Yu H B, Zhang J W*,Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum.Journal of Differential Equations, 2013, 254(1): 229-255.
[2] Yu H B, Global classical large solutions with vacuum to 1D compressible MHD with zero resistivity.Acta applicandae mathematicae, 2013, 128(1): 193-209.
[3] Yu H B, A blow-up criterion of strong solutions to the 3D compressible MHD equations with vacuum.Journal of Mathematical Analysis and Applications, 2013, 406(2): 437-446.
[4] Zhang P X,Yu H B*, Global regularity to the 3D incompressible MHD equations.Journal of Mathematical Analysis and Applications, 2015, 432(2): 613-631.
[5] Yu H B*, Zhang P X, Global strong solutions to the incompressible Navier–Stokes equations with density-dependent viscosity.Journal of Mathematical Analysis and Applications, 2016, 444(1): 690-699.
[6] Yu H B, Global regularity to the 3D MHD equations with large initial data in bounded domains.Journal of Mathematical Physics57, 083102 (2016).
[7] Yu H B*, Zhao J N, Global classical solutions to the 3D isentropic compressible Navier–Stokes equations in a bounded domain.Nonlinearity, 2017, 30: 361–381. This results are included as separate subsections to the monograph "Mathematical Modeling in Fluid Mechanics" accepted to be published in CRS Publisher.
[8] Yu H B, Global regularity to the 2D incompressible MHD with mixed partial dissipation and magnetic diffusion in a bounded domain.Acta Mathematica Scientia,2017,37B(2):395-404.
[9] Yu H B, Xu H, Zhu M X*, Global regularity to the 3D generalized MHD equations with large initial data.Applied Mathematics Letters,68 (2017) 117–121.
[10] Xu H,Yu H B*, Global strong solutions to the 3D inhomogeneous heat-conducting incompressible fluids.Applicable Analysis,DOI:10.1080/00036811.2017.1399362.
[11] Yu H B*, Zhang P X, Shi X J, Global strong solutions to the 3D incompressible MHD equations with density-dependent viscosity.Computers and Mathematics with Applications, DOI:10.1016/j.camwa.2018.01.012.
[12] Wang W,Yu H B, Zhang P X*, Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with the general external force.Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.4915.