肖占魁 个人简历
◆个人简介
肖占魁,男,博士,现为亚搏手机登录页面副教授
◆研究兴趣
1. 有限维代数的表示理论与组合,包含在博弈、运筹等领域的应用
2. 典型群与量子群的不变量理论
3. 非交换环理论与算子代数
◆主持科研项目:
a.2014.01-2017.12,亚搏手机登录页面创新团队与领军人才
算子理论及其应用(2014KJTD14)
b.2014.01-2016.12,国家自然科学基金青年项目
典型群与量子群的不变量理论及其应用(11301195)
c.2013.01-2013.12,国家自然科学基金天元数学基金
Morita系统环上的保持映射及其在算子理论中的应用(11226068)
◆教育经历
2010年7月博士毕业于北京理工大学(导师:葛渭高教授、胡峻教授)
2007年7月硕士毕业于北京理工大学(导师:魏丰教授)
2005年7月学士毕业于北京理工大学
◆工作研究经历
2014.1—至今 亚搏手机登录页面 副教授
2010.7—2014.1 亚搏手机登录页面 讲师
2015.3—2016.3 比利时Hasselt大学访问学者(国家留学基金委资助)
◆学术综述和研究成果
从事代数学领域的研究,个人偏重于代数学与其他领域的交叉研究,特别是和分析学的算子理论以及经济学博弈论的交叉领域。截至2016年12月15日根据美国数学会MathSciNet统计论文被56人引用104次。
◆论文目录:
亚搏手机登录页面工作期间:
18. The annihilator of tensor space in the q-rook monoid algebra
Bull. Aust. Math. Soc. 96 (2017), 77—86.
17. On tensor spaces for rook monoid algebras,
Acta Math. Sinica, English Series, 32 (2016), 607—620.
16. Jordan derivations of incidence algebras,
Rocky Mountain J. Math.45(2015), 1357—1368.
15. Centralizing traces and Lie triple isomorphisms on generalized matrix algebras,
Linear Multilinear Algebra,63(9), (2015), 1786—1816.
(X.-F. Liang, F. Wei, Z.-K.Xiao and A. Fosner)
14. Centralizing traces and Lie triple isomorphisms on triangular algebras,
Linear Multilinear Algebra,63(7), (2015), 1309—1331. (Z.-K.Xiao, F. Wei and A. Fosner)
13. Commuting traces and Lie isomorphisms on generalized matrix algebras,
Operators Matrices,8, (2014), 821—847. (Z.-K.Xiao and F. Wei)
12. Nonlinear Lie-type derivations of von Neumann algebras and related topics,
Colloquium Math.132, (2013), 53—71. (A. Fosner, F. Wei and Z.-K.Xiao)
11. Nonlinear lie-type derivations on full matrix algebras,
Monatsh. Math.170, (2013), 77—88. (Z.-K.Xiao and F. Wei)
10. On a theorem of Lehrer and Zhang,
Documenta Math.17, (2012), 245—270. (J. Hu and Z.-K.Xiao)
9. On cell modules of symmetric cellular algebras,
Monatsh. Math.168, (2012), 49—64. (Y.-B. Li and Z.-K.Xiao)
8. Lie triple derivations of triangular algebras,
Linear Algebra Appl.437, (2012), 1234—1249. (Z.-K.Xiao and F. Wei)
7. Nonlinear Lie higher derivations on triangular algebras,
Linear Multilinear Algebra,60(8), (2012), 979—994. (Z.-K.Xiao and F. Wei)
6. Nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras, Linear Multilinear Algebra,60(6), (2012), 645—656. (Z.-X. Chen and Z.-K.Xiao)
5. A combinatorial note for harmonic tensors,
Int. J. Math. Math. Sci.2012, (2012), article ID:316389.
4. Jordan higher derivations on some operator algebras,
Houston J. Math.38, (2012), 275—293. (Z.-K.Xiao and F. Wei)
3. Higher derivations of triangular algebras and its generalizations,
Linear Algebra Appl.435, (2011), 1034—1054. (F. Wei and Z.-K.Xiao)
2. Additivity of maps on generalized matrix algebras,
Electronic J. Linear Algebra,22, (2011), 743—757. (Y.-B. Li and Z.-K.Xiao)
1. Commuting mappings of generalized matrix algebras,
Linear Algebra Appl.433, (2010), 2178—2197. (Z.-K.Xiao and F. Wei)
读书期间:
9. Generalized Jordan derivations on semiprime rings and its applications in range inclusion problem, Mediterr. J. Math.8, (2011), 271—291.(F. Wei and Z.-K.Xiao)
8. On tensor spaces for Birman-Murakami-Wenzl algebras,
J. Algebra,324, (2010), 2893—2922. (J. Hu and Z.-K.Xiao)
7. Jordan higher derivations on triangular algebras,
Linear Algebra Appl.432, (2010), 2615—2622. (Z.-K.Xiao and F. Wei)
6. Generalized derivations on (semi-)prime rings and noncommutative Banach algebras,
Rend. Sem. Mat. Uni. Padova,122(4), (2009), 95--109.(F. Wei and Z.-K.Xiao)
5. Generalized Jordan triple higher derivations on semiprime rings,
Bull. Korean Math. Soc.46(3), (2009), 553--565. (F. Wei and Z.-K.Xiao)
4. Pair of (generalized-) derivations on rings and Banach algebras,
Bull. Korean Math. Soc.46(5), (2009), 857--866. (F. Wei and Z.-K.Xiao)
3. Identities with generalized derivations and automorphisms on rings,
Adv. Math. (China)38(1), (2009), 57--68. (F. Wei and Z.-K.Xiao)
2. Pairs of derivations on rings and Banach algebras,
Demonstratio Math.41(2), (2008), 297--308. (F. Wei and Z.-K.Xiao)
1. Generalized Jordan derivations on semiprime rings,
Demonstratio Math.40(4), (2007), 789--798. (F. Wei and Z.-K.Xiao)